This sampler contains problems from all chapters. It uses topics common to organic chemistry textbooks and no additional introduction is provided. Therefore, you should recognize the subject matter and its similarity to your textbook.

In Part A, you simply need to add the curved arrows or predict the equilibrium for acid-base reactions.

In Part B, you will need to add the intermediates or products as well as the curved arrows.

In Part C, you will need to write a complete mechanism. The problems are the same problems, but written in a manner quite similar to your textbook. If you have difficulty with Part C, then you will have difficulty with the problems from your textbook as well. You should return to Parts A or B to practice the mechanism.

Part D gives a completed mechanism.

The Notes are not the complete notes for the sampler, they are simply representative of notes that are present in A Guide to Organic Chemistry Mechanisms.
A Sampler to
A Guide to
Organic Chemistry Mechanisms

A Guided Inquiry Workbook
Easy to Follow Curved Arrows

Peter Wepplo

Curved Arrow Press
Princeton, New Jersey
Guide to Drawing Resonance Structures

Resonance Structures

If you are unfamiliar with the use of the curved arrow, refer to the discussion in the Notes section. A good place to start pushing electrons is in drawing resonance structures. They have the elements of electron movement, but the problems will be more limited in scope.

Resonance Structures of Anions

The principle for understanding resonance structures is to understand that electrons will operate by a push-pull mode or model. If there’s a net negative charge, it will be the electrons of the atom with the negative charge that will push toward the pi bond. We will start our curved arrow with those electrons. Continue to move them toward any neighboring pi bonds (push) to create and break new bonds. You should note that two curved arrows are required to avoid structures with more than eight valence electrons.

For the following examples, add curved arrows, where needed, to show how the electrons move to form the next structure. For 1-6, the first and last structures are the same. In that case, you are converting it back to the starting structure.

1.

\[
\begin{array}{c}
\text{O} \quad \text{C} \quad \text{H} \quad \text{O} \\
\text{C} \quad \text{H} \quad \text{O} \\
\text{C} \quad \text{H} \quad \text{O}
\end{array}
\]

2.

\[
\begin{array}{c}
\text{H}_2\text{C} \quad \text{C} \quad \text{H} \quad \text{O} \\
\text{H}_2\text{C} \quad \text{C} \quad \text{H} \quad \text{O} \\
\text{H}_2\text{C} \quad \text{C} \quad \text{H} \quad \text{O}
\end{array}
\]

2 - Acid-Base Chemistry

1. For this example, the acids and bases are labeled. HF is the strongest acid as it has the lower pK_a. Therefore, F$, its conjugate base, is the weakest base.

\[
\begin{array}{c}
\text{O} \quad \text{H} \quad \text{F} \\
\text{H}_2\text{C} \quad \text{C} \quad \text{H} \\
\text{H}_2\text{C} \quad \text{C} \quad \text{H} \\
\text{H}_2\text{C} \quad \text{C} \quad \text{H}
\end{array}
\]

Notice the curved arrows. They describe the reaction that is taking place. We could write the following sentences to describe the curved arrows.

- A bond is being made between the oxygen and hydrogen atom with the electrons from the oxygen atom.
- A bond is being broken between the hydrogen and the fluorine atom with the electrons remaining attached to the fluorine atom.

3.

\[
\begin{array}{c}
\text{H} \quad \text{O} \quad \text{H} \\
\text{H} \quad \text{F} \\
\text{H} \quad \text{O} \quad \text{H}
\end{array}
\]

\[
\begin{array}{c}
\text{L/R} \quad \text{weakest base} \quad \text{p}K_a \quad 3.2 \quad \text{p}K_a \quad -1.7
\end{array}
\]
3 - Substitution Reactions

S_n^2 Substitution Reactions
1. An S_n^2 reaction of 1-chlorobutane with sodium iodide to give 1-iodobutane. (See Notes.)

2. An S_n^2 reaction of 1-chlorobutane with ethoxide to give 1-ethoxybutane (butyl ethyl ether). (See Notes.)

S_n^1 Substitution Reactions
20. An S_n^1 solvolysis reaction of t-butyl iodide to give t-butyl alcohol. (See Notes.)

21. An S_n^1 solvolysis reaction of (R)-(1-chloroethyl)benzene to give rac-1-phenylethanol.

4 — Elimination Reactions

Alkene Formation
1. An E2 elimination reaction of hydrogen chloride from 1-chlorooctadecane with potassium t-butoxide to give 1-octadecene. (See Notes.)
3. An E2 elimination reaction of 2-bromo-2-methylbutane to give 2-methyl-2-butene, a Zaitsev product.

\[
\begin{align*}
\text{CH}_3\text{CH}_2\text{CH}_2\text{Br} & \rightarrow \text{CH}_3\text{CH} = \text{CH}_2 + \text{HBr} \\
& \text{71%} \\
& \text{29%}
\end{align*}
\]

10. An E1cb elimination reaction of 3-chloro-3-methylcyclohexanone with t-butoxide to give 3-methyl-2-cyclohexenone. (See Notes.)

\[
\begin{align*}
\text{O} & \text{CH}_3\text{OH} \\
\text{Cl} & \text{CH}_3\text{OH}
\end{align*}
\]

Acetylene Formation

20. A synthesis of 3-hexyne from *trans*-3-hexene by bromination and two elimination reactions. (See Notes.)

5 — Electrophilic Addition to Alkenes and Alkynes

Addition of HX and H\(_2\)O to Alkenes

1. Addition of hydrogen bromide to propene to give 2-bromopropane. (See Notes.)

\[
\begin{align*}
\text{H}_2\text{C} = \text{CH}_2 + \text{HBr} & \rightarrow \text{H}_2\text{C} = \text{CHBr} \\
& \text{55%}
\end{align*}
\]

7. Addition of hydrogen bromide to 3-methyl-1-butene to give after rearrangement, 2-bromo-2-methylbutane. (See Notes.)

\[
\begin{align*}
\text{H}_2\text{C} = \text{CHCH}_2\text{CH}_3 + \text{HBr} & \rightarrow \text{BrCH}_2\text{CHCH}_2\text{CH}_3 \\
& \text{55%}
\end{align*}
\]
10. Addition of hydrogen chloride to 2-methyl-1,3-butadiene (isoprene) to give, 3-chloro-3-methyl-1-butene, the kinetic product, or 1-chloro-3-methyl-2-butene, the thermodynamic product. (See Notes.)

15. Bromination of methylcyclohexene to give (1R,2R)- and (1S,2S)-2-bromo-1-methylcyclohexanol. (See Notes.)

21. Addition of bromine to ethynylcyclopentane to give (E)-(1,2-dibromovinyl)cyclopentane and (1,1,2,2-tetrabromoethyl)cyclopentane. (See Notes.)

6 — Rearrangement Reactions

Baeyer-Villiger Oxidation

1. Acid catalyzed Baeyer-Villiger oxidation of 2,2-dimethylcyclopentanone with peracetic acid. (See Notes.)
7 — Electroyclic Reactions

Diels Alder Reactions

1. A Diels-Alder reaction between 1,3-butadiene and 2-propenal (acrolein).

8. A reverse-forward Diels-Alder reaction between cyclopentadiene and maleic anhydride.

8 — Carbonyl Addition and Addition-Elimination Reactions

Grignard Addition to a Carbonyl Group

1. Addition of methyl magnesium bromide to cyclohexanone to give 1-methylcyclohexanol (for formation of Grignard reagents, see Notes).

Wittig Reaction

5. Wittig reaction, Step 1, formation of Wittig reagent. (See Notes.)

Step 2, reaction with benzaldehyde
10. Formation of the cyanohydrin (2-hydroxy-2-methylpropanenitrile) from acetone. (See Notes.)

23. Base hydrolysis of octyl isobutyrate to give octanol and isobutyric acid. Step 1, treatment with base. (See Notes.)

9 — Reactions of Enols and Enolates

9. Enolization and alkylation of ethyl propionate with benzyl bromide. (See Notes.)

14. Acid catalyzed bromination of acetophenone to give α-bromoacetophenone. (See Notes.)

10 — Dehydration/Halogenation Agents

3. Reaction of 1-butanol with tosyl chloride and pyridine to give butyl tosylate. (See Notes.)
7. Reaction of triphenylphosphine, carbon tetrachloride and cyclopentanol to give chlorocyclopentane. (See Notes.)

11 — Reduction Reactions

2. Sodium borohydride reduction of cyclopentanone to cyclopentanol.

Wolff Kischner Reduction

12. Reaction of the ketone with hydrazine under basic conditions to form the hydrazide.

12 — Oxidation Reactions

Chromic Acid Oxidation

1. Chromic acid oxidation (Jones oxidation) of 3-methyl-2-butanol to 3-methyl-2-butanone. (See Notes.)
5. Oxidation of cyclohexanol to cyclohexanone with sodium hypochlorite (NaOCl, bleach).

\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{O} \quad \text{O} \\
\text{O} & \quad \text{Cl} \quad \text{Cl} \\
\text{H} & \quad \text{H} \quad \text{H}
\end{align*}
\]

13 — Organometallic Reactions

Acyclic Heck Reaction

1. Step 1, reduction of palladium (II) to zero valent palladium with propene. (See Notes.)

\[
\begin{align*}
\text{Pd} & \quad \text{OAc} \\
\text{AcO} & \quad \text{Pd} \\
\text{CH}_3 & \quad \text{CH}_3 \\
\end{align*}
\]

2. syn addition

3. syn elimination

4. rotate

5. cont'd

Catalytic Reduction of an Alkene (See Notes.)

3. Catalytic hydrogenation of cis-3-hexene to hexane.

\[
\begin{align*}
\text{Pd} & \quad \text{H} \\
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H} \\
\text{D} & \quad \text{D} \\
\text{D} & \quad \text{D} \\
\text{D} & \quad \text{D} \\
\end{align*}
\]

4. D-Pd

5. D-Pd

6. D-Pd

7. D-Pd

8. D-Pd

9. D-Pd

14 — Aromatic Substitution Reactions

Electrophilic Aromatic Substitution of Benzene

1. Friedel Crafts acylation of benzene.

\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{C} \quad \text{Cl} \\
\text{Cl} & \quad \text{Al} \quad \text{Cl} \\
\end{align*}
\]

2. slow

3. arenium ion

4. HCl + AlCl₃
11. Nucleophilic aromatic substitution of 1-fluoro-4-nitrobenzene with ammonia to give 4-nitroaniline. (See Notes.)

\[
\begin{align*}
\text{F} & \rightarrow \text{NH}_3 \\
\end{align*}
\]

15 — Carbene and Nitrene Reactions

Carbene Reactions

1. Simmons-Smith carbene addition to cyclohexene to give a bicyclo[4.1.0]heptane. (See Notes.)

\[
\begin{align*}
\text{Zn} & \text{I} \rightarrow \text{I-C}_2\text{H}_5\text{I} \\
\text{Zn} & \text{I} \\
\end{align*}
\]

3. Dihalocarbene addition to cyclohexene to give 7,7-dichlorobicyclo[4.1.0]heptane.

\[
\begin{align*}
\text{Cl-C}_2\text{H}_5\text{Cl} & \rightarrow \text{t-Bu} \text{Cl-C}_2\text{H}_5\text{Cl} \\
\text{t-BuOH} & \\
\end{align*}
\]

16 — Radical Reactions

Allylic Bromination with NBS

2. Free radical bromination of cyclohexene with \(N\)-bromosuccinimide, an allylic bromination.

Overall reaction

\[
\text{cyclohexene} + \text{NBS} \rightarrow \text{cyclohexene} + \text{NBS} \\
\text{cat. amt. benzo} \text{yol peroxide} \\
\text{heat or light (hr)}
\]
2. Free radical bromination of cyclohexene with \textit{N-}bromosuccinimide, an allylic bromination -- continued.

Initiation (See Notes.)

\[
\begin{align*}
&\text{Cyclohexene} + \cdot \text{Br} \rightarrow \text{Cyclohexyl radical} + \text{H-Br} \\
&\text{Cyclohexene} + \cdot \text{Br} \rightarrow \text{Cyclohexyl radical} + \cdot \text{Br}
\end{align*}
\]

Propagation

\[
\begin{align*}
\text{Cyclohexyl radical} + \cdot \text{Br} \rightarrow \text{Bromo-cyclohexene} + \cdot \text{Br}
\end{align*}
\]

Termination

\[
\begin{align*}
\text{Bromo-cyclohexene} + \cdot \text{Br} \rightarrow \text{Bromo-cyclohexene} + \cdot \text{Br}
\end{align*}
\]

Notes

A challenge to maintaining the utility of this book as a guide is to maintain the organization of the different parts. While it would be useful to have notes in different parts, doing so makes it very difficult to maintain the overall organization of the book. It is simpler to keep notes to a minimum within each part and to place notes elsewhere. As a result, additional comments have been added in the following Notes section.

Chapter 1 Getting Ready for Reactions

About the Atom

A commonly held view is that, ‘There is a strong correlation between the length of a covalent bond (i.e., the distance between the bonding atoms) and the strength of the bond.’ This notion is consistent with Coulomb’s Law.

An alternate model may be drawn in which bonds are made up of electron pairs that are mutually attracted to pairs of positively charged nuclei. This model is represented in \textit{An Atomic Model for a Hydrogen-Fluorine Bond} on the left. This model is in agreement with the acidities for the atoms C, N, O, and F. It can be used explain why a proton, connected to a triple bond which is shorter, can be more acidic than a proton attached to a double or single bond. Because the C-H bond lengths are the shortest in a terminal triple bond, the electrons are closest to the carbon nucleus and the electron-proton distance is larger. With that model, the key variable for acidity (bond strength) is the proton-electron pair distance. Since the force varies inversely with the square of the
distance, a greater distance will result in a weaker bond. For acidity, that longer proton-electron pair distance results in greater acidity.

Resonance Structures

With resonance structures, a neighboring atom can donate electrons or pull electrons away. Examples 14 and 15 (page 4), illustrate electron donation and Examples 16, 17, and 26 (pages 4 & 6) illustrate electrons being pulled to the more electron withdrawing atom. When the neighboring atom donates electrons, it will release the electrons on the atom to which they are being donated. As a result, the electrons of the receiver atom will be held less tightly and can react more easily, see Example 17, Step 2, page 60. Conversely, if the electrons are pulled away, the electrons of the donor atom will now be held more tightly.

Chapter 3 Substitution Reactions

You should consult with your textbook for a more thorough discussion of S_N1 and S_N2 reactions. Substitution reactions can be described in two extremes. In an S_N1 reaction, the leaving group must pull its electrons from the carbon in the rate-limiting step. No bond formation occurs until a carbocation exists long enough for the leaving group to diffuse away and the group having left does not influence any incoming nucleophile. If the RX carbon had been optically active, then the product of the reaction would be completely racemic.

On the other extreme is an S_N2 reaction in which bond formation precedes bond cleavage. The nucleophile must push into the carbon nucleus. If the RX carbon were optically active, the product would retain that optical activity but it will be of the opposite configuration due to an inversion that takes place.

In between these extremes will be the reactions for which you have to predict the products and sometimes there are ambiguities or exceptions. Therefore, I find that predicting the products can be challenging. However, there are some simple principles,

- An S_N1 reaction requires conditions that favor carbocation formation, namely a good leaving group preferably on a tertiary carbon, a polar solvent, usually water, and a weak nucleophiles (often uncharged). Tertiary halides can undergo S_N1 reactions while primary halides (unless allylic or benzylic) do not.
- S_N2 reactions require conditions in which a pair of electrons are able to attack the carbon attached to the leaving group. That attack must precede bond cleavage. In order to extend the reach of the electrons, anions and especially anions of weak acids are common. However, nucleophiles whose conjugate acid is greater than 11 increases the amount of elimination products. High nucleophile concentrations and polar aprotic solvents (DMF, DMSO) are common.
- The ease of nucleophilic substitution is: methyl halide>primary halide>secondary halide. Tertiary halides fail to react via S_N2 mechanisms. Secondary halides are more difficult to displace by an S_N2 reaction and the conditions of the reaction are more important in predicting the products.
- Any factors that interfere with S_N2 reactions will increase the amount of elimination. In Chapter 4, Examples 2, 3, and 5 result in elimination reactions. Elimination increases as steric hindrance to an S_N2 reaction increases.
- The solvent effect for S_N2 reactions is rationalized by the formation of reactivity reducing hydrogen bonds (or their absence). Polar aprotic solvents cannot hydrogen bond and therefore facilitate S_N2 reactions. This can explain why fluoride, the most basic halide, can react faster in a polar aprotic solvent, and iodide can react faster in protic solvents. It is presumed that the electrons of fluoride would contain hydrogen bonds and thus limit their availability. Iodide would be more immune to that effect.

For a given set of problems, students will not experience many difficulties in substitution reactions. Just focus on bond making and breaking, and the orientation of the nucleophiles and substrates. However, some nucleophiles may have two different sites to react (ambident anions). When resonance structures exist, only the greatest resonance contributor is usually shown. However, bonds may form to a charged atom of an unshown resonance isomer. It may be useful to write the resonance structure and consider why a reaction might occur on one atom versus another.

Chapter 5 Electrophilic Addition to Alkenes and Alkynes

Hydroboration-Oxidation of Alkene

Chap. 5.17 In Example 17, note how similar step one of this reaction is to the prior reactions in this chapter. Boron is the electrophile and reacts with the electrons from the alkene. The second part of this reaction takes place before any atom movement can take place. The electrons from the negatively charged boron are donated to the carbocation. In this case, a proton is attached to the donated electrons.

I formerly wrote to repeat the first reaction 2X. While this is expedient, I found many students didn’t understand what was happening with the repeat statement. If in learning the mechanism, when it becomes clear to you that it is the same reaction being
repeated three times, you can just write the first hydroboration and then indicate that the hydroboration step is repeated 2X.

In step 2, boron is still an electrophile except the nucleophile is now a hydroperoxy anion. Note, it is the same reaction repeated three times. You can just write the first oxidation step and then indicate that the oxidation step is repeated 2X.

You may also use this alternate mechanism for the hydrolysis. I like the deprotonation to promote the loss of the alkoxide. However, the product of that elimination is an sp³-hybridized boron with a negative charge. The next step requires that boron attract an additional pair of electrons. The product of that addition is an sp³-hybridized boron with an alkoxide oxygen neighbor. While I did not use this mechanism, if your textbook or your instructor uses it, then you may use it also.

Stepwise versus Concerted Reactions

Many textbooks write the hydroboration step as a concerted reaction. I have not done so for two reasons. One is that this appears to be a symmetry forbidden 2 + 2 reaction. The symmetry rules can be used to explain why alkenes and HBr do not thermally add to an alkene in a concerted reaction. Because the addition of borane to an alkene is a syn addition, many books write it as a concerted reaction. If the reaction were concerted, then charges should be minimized and the product will form in a single step. I suggest a definition of a concerted reaction as, any electron movements that occur faster than bond rotation are concerted. Therefore a reaction may be concerted and have additional steps provided they occur faster than atom movements. In this case, the stepwise mechanism preserves the reactivity of an alkene as a nucleophile and borane as an electrophile. This is consistent with the majority of boron and alkene reactions. The movement of electrons to form a bond can be expected to occur faster than atom movements and thus be consistent with a concerted reaction.

Chapter 8 Carboxyl Addition and Addition-Elimination Reactions

Wittig Reaction and Horner-Wadsworth-Emmons Reaction

Chap. 8.5 The Wittig and Horner-Wadsworth-Emmons variation of the Wittig reaction are complementary reactions having different advantages. The details of the Wittig reaction are useful in understanding the stereochemistry of the product. After formation of the reagent (Step 1), the addition (of the ylide) to an aldehyde gives an intermediate in which the more stable conformation predominates. Note the conformation shown below. This has been drawn conventionally and as the corresponding Newman projection (see box). This conformation was not included in the reaction scheme. This conformation must undergo a bond rotation in order to bring the phosphorus and oxygen atoms together. That rotation gives the conformation that results in a cis-alkene. The Wittig reaction stereochemistry is determined by the fast addition to the carbonyl group.

Chapter 13 Organometallic Reactions

Organometallic chemistry often involves reactions in which the mechanism is not understood, incompletely understood, or complex. In some reactions, I show how it might take place.

Catalytic Reduction of an Alkene

Chap. 13.3 This mechanism is hypothetical. I extrapolated from the Heck reaction to similar mechanisms and other metals. This mechanism can broadly explain formation of the products and by-products of catalytic reduction reactions. It also explains how trans-fatty acids can be produced.
1 — Getting Ready for Reactions

Guide to Drawing Resonance Structures

Resonance Structures

If you are unfamiliar with the use of the curved arrow, refer to the discussion in the Notes section. A good place to start pushing electrons is in drawing resonance structures. They have the elements of electron movement, but the problems will be more limited in scope.

Resonance Structures of Anions

The principle for understanding resonance structures is to understand that electrons will operate by a push-pull mode or model. If there’s a net negative charge, it will be the electrons of the atom with the negative charge that will push toward the pi bond. We will start our curved arrow with those electrons. Continue to move them toward any neighboring pi bonds (push) to create and break new bonds. You should note that two curved arrows are required to avoid structures with more than eight valence electrons.

For the following examples, add curved arrows, where needed, to show how the electrons move to form the next structure. For 1-6, the first and last structures are the same. In that case, you are converting it back to the starting structure.

1.

2.

2 - Acid-Base Chemistry

1. For this example, the acids and bases are labeled. HF is the strongest acid as it has the lower pK_a. Therefore, F^-, its conjugate base, is the weakest base.

\[
\begin{align*}
\text{H}_2\text{C}=&\text{C}=-\text{O}^+ & \text{H}^- & \xrightarrow{\text{L/R}} & \text{H}_2\text{C}=&\text{C}=-\text{O}^- & \text{H}^+ & \xrightarrow{\text{L/R}} & \text{H}_2\text{C}=&\text{C}=-\text{O}^+ & \text{F}^- \\
\text{Base} & & \text{Acid} & & \text{Conjugate Acid} & & \text{Conjugate Base} & & & \\
\text{pK_a 3.2} & & \text{pK_a 4.75} & & \text{weakest base} & & & & & \\
\end{align*}
\]

Notice the curved arrows. They describe the reaction that is taking place. We could write the following sentences to describe the curved arrows.

* A bond is being made between the oxygen and hydrogen atom with the electrons from the oxygen atom.
* A bond is being broken between the hydrogen and the fluorine atom with the electrons remaining attached to the fluorine atom.

3.

\[
\begin{align*}
\text{H}^- & \xrightarrow{\text{L/R}} \text{H}^- & & \xrightarrow{\text{L/R}} & \text{H}^- & \xrightarrow{\text{L/R}} & \text{H}^- & \\
\text{weakest base} & & & & & & & & \text{pK}_a 3.2 & \text{pK}_a -1.7
\end{align*}
\]
3 - Substitution Reactions

S_n2 Substitution Reactions

1. An S_n2 reaction of 1-chlorobutane with sodium iodide to give 1-iodobutane. (See Notes.)

2. An S_n2 reaction of 1-chlorobutane with ethoxide to give 1-ethoxybutane (butyl ethyl ether). (See Notes.)

S_n1 Substitution Reactions

20. An S_n1 solvolysis reaction of t-butyl iodide to give t-butyl alcohol. (See Notes.)

21. An S_n1 solvolysis reaction of (R)-(1-chloroethyl)benzene to give rac-1-phenylethanol.

4 — Elimination Reactions

Alkene Formation

1. An E2 elimination reaction of hydrogen chloride from 1-chlorooctadecane with potassium t-butoxide to give 1-octadecene. (See Notes.)
3. An E2 elimination reaction of 2-bromo-2-methylbutane to give 2-methyl-2-butene, a Zaitsev product.

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 \\
\text{Br} & \quad \text{H} \\
\text{H} & \quad \text{H} \\
\text{CH}_3 & \quad \text{CH}_3 \\
\end{align*}
\]

Acetylene Formation

20. A synthesis of 3-hexyne from \textit{trans}-3-hexene by bromination and two elimination reactions. (See Notes.)

5 — Electrophilic Addition to Alkenes and Alkynes

Addition of HX and H\textsubscript{2}O to Alkenes

1. Addition of hydrogen bromide to propene to give 2-bromopropane. (See Notes.)

7. Addition of hydrogen bromide to 3-methyl-1-butene to give after rearrangement, 2-bromo-2-methylbutane. (See Notes.)
10. Addition of hydrogen chloride to 2-methyl-1,3-butadiene (isoprene) to give, 3-chloro-3-methyl-1-butene, the kinetic product, or 1-chloro-3-methyl-2-butene, the thermodynamic product. (See Notes.)

\[
\begin{align*}
&\text{Kinetic product} \\
&\text{Thermodynamic product}
\end{align*}
\]

15. Bromination of methylcyclohexene to give \((1R,2R)\)- and \((1S,2S)\)-2-bromo-1-methylcyclohexanol. (See Notes.)

21. Addition of bromine to ethynylcyclopentane to give \((E)\)-(1,2-dibromovinyl)cyclopentane and \((1,1,2,2\text{-tetrabromoethyl})\) cyclopentane. (See Notes.)

6 — Rearrangement Reactions

Baeyer-Villiger Oxidation

1. Acid catalyzed Baeyer-Villiger oxidation of 2,2-dimethylcyclopentanone with peracetic acid. (See Notes.)
7 — Electrocyclic Reactions

Diels Alder Reactions

1. A Diels-Alder reaction between 1,3-butadiene and 2-propenal (acrolein).

8. A reverse-forward Diels-Alder reaction between cyclopentadiene and maleic anhydride.

8 — Carbonyl Addition and Addition-Elimination Reactions

Grignard Addition to a Carbonyl Group

1. Addition of methyl magnesium bromide to cyclohexanone to give 1-methylcyclohexanol (for formation of Grignard reagents, see Notes).

Wittig Reaction

5. Wittig reaction, Step 1, formation of Wittig reagent. (See Notes.)
10. Formation of the cyanohydrin (2-hydroxy-2-methylpropanenitrile) from acetone. (See Notes.)

23. Base hydrolysis of octyl isobutyrate to give octanol and isobutyric acid. Step 1, treatment with base. (See Notes.)

9 — Reactions of Enols and Enolates

9. Enolization and alkylation of ethyl propionate with benzyl bromide. (See Notes.)

14. Acid catalyzed bromination of acetophenone to give α-bromoacetophenone. (See Notes.)

10 — Dehydration/Halogenation Agents

3. Reaction of 1-butanol with tosyl chloride and pyridine to give butyl tosylate. (See Notes.)
7. Reaction of triphenylphosphine, carbon tetrachloride and cyclopentanol to give chlorocyclopentane. (See Notes.)

\[
\text{Ph} \quad \text{Cl} \\
\text{Ph} \quad \text{Cl} \\
\text{Ph} \quad \text{Cl}
\]

\[
\text{Ph} \quad \text{P} \\
\text{Ph} \quad \text{Cl}
\]

\[
\text{O} \quad \text{H}
\]

\[
\text{Ph} \quad \text{P} \\
\text{Ph} \quad \text{Cl}
\]

\[
\text{O} \quad \text{H}
\]

11 — Reduction Reactions

2. Sodium borohydride reduction of cyclopentanone to cyclopentanol.

\[
\text{O} \quad \text{H} \\
\text{H} \\
\text{H} \\
\text{B} \\
\text{H}
\]

\[
\text{O} \quad \text{H}
\]

Wolff Kischner Reduction

12. Reaction of the ketone with hydrazine under basic conditions to form the hydrazide.

\[
\text{O} \\
\text{H}
\]

\[
\text{O} \quad \text{H}
\]

12 — Oxidation Reactions

Chromic Acid Oxidation

1. Chromic acid oxidation (Jones oxidation) of 3-methyl-2-butanol to 3-methyl-2-butanone. (See Notes.)

\[
\text{H} \quad \text{OH} \\
\text{O} \quad \text{C} \\
\text{H} \quad \text{OH}
\]

\[
\text{H} \quad \text{OH} \\
\text{O} \quad \text{C} \\
\text{H} \quad \text{OH}
\]
5. Oxidation of cyclohexanol to cyclohexanone with sodium hypochlorite (NaOCl, bleach).

![Chemical reaction diagram]

13 — Organometallic Reactions

Acyclic Heck Reaction

1. Step 1, reduction of palladium (II) to zero valent palladium with propene. (See Notes.)

![Chemical reaction diagram]

Catalytic Reduction of an Alkene (See Notes.)

3. Catalytic hydrogenation of cis-3-hexene to hexane.

![Chemical reaction diagram]

14 — Aromatic Substitution Reactions

Electrophilic Aromatic Substitution of Benzene

1. Friedel Crafts acylation of benzene.

![Chemical reaction diagram]
11. Nucleophilic aromatic substitution of 1-fluoro-4-nitrobenzene with ammonia to give 4-nitroaniline. (See Notes.)

\[
\begin{align*}
\text{F} & \quad \text{NH}_3 \\
\text{O} & \quad \text{O} \\
\text{N} & \quad \text{NH}_3
\end{align*}
\]

15 — Carbene and Nitrene Reactions

Carbene Reactions

1. Simmons-Smith carbene addition to cyclohexene to give a bicyclo[4.1.0]heptane. (See Notes.)

\[
\begin{align*}
\text{Zn} & \quad \text{I} \quad \text{I} \\
\text{I} & \quad \text{Zn} \quad \text{I} \\
\text{Zn} & \quad \text{I} \quad \text{I}
\end{align*}
\]

3. Dihalocarbene addition to cyclohexene to give 7,7-dichlorobicyclo[4.1.0]heptane.

16 — Radical Reactions

Allylic Bromination with NBS

2. Free radical bromination of cyclohexene with N-bromosuccinimide, an allylic bromination.

Overall reaction

\[
\begin{align*}
\text{benzoyl peroxide} & \quad \text{cat. amt.} \\
\text{heat or light (h\text{\textdegree})} & \quad \text{NBS}
\end{align*}
\]

\[
\begin{align*}
\text{benzoyl peroxide} & \quad \text{cat. amt.} \\
\text{heat or light (h\text{\textdegree})} & \quad \text{NBS}
\end{align*}
\]
2. Free radical bromination of cyclohexene with N-bromosuccinimide, an allylic bromination -- continued.

Initiation (See Notes.)

![Initiation Reaction Diagram]

Propagation

![Propagation Reactions Diagram]

Termination

![Termination Reaction Diagram]
1 — Getting Ready for Reactions

Guide to Drawing Resonance Structures

Resonance Structures

If you are unfamiliar with the use of the curved arrow, refer to the discussion in the Notes section. A good place to start pushing electrons is in drawing resonance structures. They have the elements of electron movement, but the problems will be more limited in scope.

Resonance Structures of Anions

The principle for understanding resonance structures is to understand that electrons will operate by a push-pull mode or model. If there’s a net negative charge, it will be the electrons of the atom with the negative charge that will push toward the pi bond. We will start our curved arrow with those electrons. Continue to move them toward any neighboring pi bonds (push) to create and break new bonds. You should note that two curved arrows are required to avoid structures with more than eight valence electrons.

For the following examples, add curved arrows, where needed, to show how the electrons move to form the next structure. For 1-6, the first and last structures are the same. In that case, you are converting it back to the starting structure.

1.

\[
\begin{align*}
\text{Base} & : & \text{Acid} & : & \text{Conjugate Acid} & : & \text{Conjugate Base} \\
\text{L/R} & : & \text{pK}_a 3.2 & : & \text{pK}_a 4.75 & : & \text{weakest base}
\end{align*}
\]

Notice the curved arrows. They describe the reaction that is taking place. We could write the following sentences to describe the curved arrows.

* A bond is being made between the oxygen and hydrogen atom with the electrons from the oxygen atom.
* A bond is being broken between the hydrogen and the fluorine atom with the electrons remaining attached to the fluorine atom.

2 - Acid-Base Chemistry

1. For this example, the acids and bases are labeled. HF is the strongest acid as it has the lower pK\textsubscript{a}. Therefore, F-, its conjugate base, is the weakest base.

\[
\begin{align*}
\text{H}_2\text{C} & - \text{C} - \text{O} : + & \text{H} - \text{F} & : & \text{H}_2\text{C} - \text{C} - \text{O} : - & \text{H} & : & \text{F} & : \\
\text{Base} & & \text{Acid} & & \text{Conjugate Acid} & & \text{Conjugate Base} \\
\text{L/R} & & \text{pK}_a 3.2 & & \text{pK}_a 4.75 & & \text{weakest base}
\end{align*}
\]

3.

\[
\begin{align*}
\text{L/R} & : \text{weakest base} & \text{pK}_a 3.2 & : & \text{pK}_a -1.7
\end{align*}
\]
4.

\[
\text{H} - \text{S} - \text{H} + \text{H} - \text{N} - \text{H} \rightleftharpoons + \text{L/R} 7.0 \quad \text{weakest base} 9.2
\]

3 - Substitution Reactions

\(\text{S}_n^2 \) Substitution Reactions

1. An \(\text{S}_n^2 \) reaction of 1-chlorobutane with sodium iodide to give 1-iodobutane. (See Notes.)

\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{NaI} \\
\text{CH}_3\text{CH}_2\text{CH}_2\text{Cl} & \quad \text{acetone}
\end{align*}
\]

2. An \(\text{S}_n^2 \) reaction of 1-chlorobutane with ethoxide to give 1-ethoxybutane (butyl ethyl ether). (See Notes.)

\[
\begin{align*}
\text{CH}_3 & \quad \text{NaOEt} \\
\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{Cl} & \quad \text{EtOH}
\end{align*}
\]

\(\text{S}_n^1 \) Substitution Reactions

20. An \(\text{S}_n^1 \) solvolysis reaction of \(t \)-butyl iodide to give \(t \)-butyl alcohol. (See Notes.)

\[
\begin{align*}
\text{CH}_3\text{CH} & \quad \text{H}_2\text{O} \\
\text{CH}_3\text{CH} & \quad \text{CH}_3\text{CH}_2\text{CH}_2\text{I} \\
\text{CH}_3\text{CH}_2\text{CH}_2\text{I} & \quad \text{H}_2\text{O}
\end{align*}
\]

21. An \(\text{S}_n^1 \) solvolysis reaction of \((R)-(1\text{-chloroethyl})\text{benzene} to give rac-1-phenylethanol.

\[
\begin{align*}
\text{Br} & \quad \text{dioxane-} \\
\text{H}_2\text{O} & \quad \text{H}_2\text{O}
\end{align*}
\]

4 — Elimination Reactions

Alkene Formation

1. An E2 elimination reaction of hydrogen chloride from 1-chlorooctadecane with potassium \(t \)-butoxide to give 1-octadecene. (See Notes.)

\[
\begin{align*}
\text{C}_{18}\text{H}_{31} & \quad \text{KO-}t\text{-Bu} \\
\text{Cl} & \quad \text{toluene}
\end{align*}
\]
3. An E2 elimination reaction of 2-bromo-2-methylbutane to give 2-methyl-2-butene, a Zaitsev product.

\[
\begin{array}{c}
\text{CH}_3 \\
\text{CH}_3 \\
\text{Br}
\end{array} \xrightarrow{\text{NaOEt, EtOH}} \left(\begin{array}{c}
\text{CH}_3 \\
\text{CH}_3 \\
\text{Br}
\end{array} \right) \quad 71\%
\]

10. An E1cb elimination reaction of 3-chloro-3-methylcyclohexanone with t-butoxide to give 3-methyl-2-cyclohexenone. (See Notes.)

\[
\text{O} \xrightarrow{\text{KO-t-Bu, t-BuOH}} \text{t-BuO} \quad \text{t-BuOH}
\]

Acetylene Formation

20. A synthesis of 3-hexyne from \textit{trans}-3-hexene by bromination and two elimination reactions. (See Notes.)

\[
\xrightarrow{\text{Br}_2} \xrightarrow{\text{NaNH}_2, 2 \text{ equiv.}} \xrightarrow{\text{NH}_3}
\]

5 — Electrophilic Addition to Alkenes and Alkynes

Addition of HX and H\textsubscript{2}O to Alkenes

1. Addition of hydrogen bromide to propene to give 2-bromopropane. (See Notes.)

\[
\begin{array}{c}
\text{H}_3\text{C} \\
\text{C} \xrightarrow{\text{HBr}} \xrightarrow{\text{HBr}} \xrightarrow{\text{HBr}}
\end{array} \xrightarrow{\text{HBr}} \xrightarrow{\text{HBr}} \xrightarrow{\text{HBr}}
\]

7. Addition of hydrogen bromide to 3-methyl-1-butene to give after rearrangement, 2-bromo-2-methylbutane. (See Notes.)

\[
\begin{array}{c}
\text{H}_3\text{C} \\
\text{CH}_3 \text{CH}_2 \\
\text{C} \xrightarrow{\text{HBr}} \xrightarrow{\text{HBr}} \xrightarrow{\text{HBr}}
\end{array} \xrightarrow{\text{HBr}} \xrightarrow{\text{HBr}} \xrightarrow{\text{HBr}}
\]
10. Addition of hydrogen chloride to 2-methyl-1,3-butadiene (isoprene) to give, 3-chloro-3-methyl-1-butene, the kinetic product, or 1-chloro-3-methyl-2-butene, the thermodynamic product. (See Notes.)

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_2 \\
\text{H}_2\text{C} & \quad \text{CH}_2 \\
\text{H}_2\text{C} & \quad \text{H} \\
\text{Cl} & \quad \text{Cl}
\end{align*}
\]

- Kinetic product
- Thermodynamic product

15. Bromination of methylcyclohexene to give (1R,2R)- and (1S,2S)-2-bromo-1-methylcyclohexanol. (See Notes.)

\[
\begin{align*}
\text{CH}_3 & \quad \text{Br} \\
\text{Br} & \quad \text{Br} \\
\text{CH}_3 & \quad \text{O} \\
\text{H} & \quad \text{H} \\
\text{H}_3\text{O}^+ & \quad \text{CH}_3
\end{align*}
\]

- Step intermediate

21. Addition of bromine to ethynylcyclopentane to give (E)-(1,2-dibromovinyl)cyclopentane and (1,1,2,2-tetrabromoethyl) cyclopentane. (See Notes.)

6 — Rearrangement Reactions

Baeyer-Villiger Oxidation

1. Acid catalyzed Baeyer-Villiger oxidation of 2,2-dimethylcyclopentanone with peracetic acid. (See Notes.)

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_2 \text{COOH} \\
\text{CH}_2\text{Cl}_2 & \quad (\text{cat. } \text{H}_2\text{SO}_4)
\end{align*}
\]

cont'd
7 — Electrocyclic Reactions

Diels Alder Reactions

1. A Diels-Alder reaction between 1,3-butadiene and 2-propenal (acrolein).

\[\text{1,3-butadiene} + \text{2-propenal} \rightarrow \text{cyclopentadiene} \]

8. A reverse-forward Diels-Alder reaction between cyclopentadiene and maleic anhydride.

\[\text{cyclopentadiene} + \text{maleic anhydride} \rightarrow \text{product} \]

8 — Carbonyl Addition and Addition-Elimination Reactions

Grignard Addition to a Carbonyl Group

1. Addition of methyl magnesium bromide to cyclohexanone to give 1-methylcyclohexanol (for formation of Grignard reagents, see Notes).

\[\text{CH}_3\text{MgBr} + \text{cyclohexanone} \rightarrow \text{1-methylcyclohexanol} \]

Wittig Reaction

5. Wittig reaction, Step 1, formation of Wittig reagent. (See Notes.)

\[\text{PH}_3\text{CH} = \text{C} = \text{Br} + \text{THF} \rightarrow \text{Wittig reagent} \]

Step 2, reaction with benzaldehyde

\[\text{C}_6\text{H}_5\text{C} = \text{O} + \text{THF} \rightarrow \text{product} \]
10. Formation of the cyanohydrin (2-hydroxy-2-methylpropanenitrile) from acetone. (See Notes.)

\[
\begin{align*}
\text{CH}_3\text{C} &= \text{C} - \text{O} - \text{CH}_3 \\
\text{KCN} &\quad \text{H}_2\text{SO}_4 \\
\text{H}_2\text{O} &\quad \rightarrow \\
\text{O} &= \text{C} - \text{C} = \text{N} \\
\text{CH}_3 &\quad \text{H}_3\text{C} \\
\end{align*}
\]

23. Base hydrolysis of octyl isobutyrate to give octanol and isobutyric acid. Step 1, treatment with base. (See Notes.)

\[
\begin{align*}
\text{C} &= \text{O} - \text{C}_8\text{H}_{17} \\
\text{NaOH} &\quad \text{H}_2\text{O} \\
\text{H}_2\text{O} &\quad \rightarrow \quad \text{cont'd} \\
\end{align*}
\]

9 — Reactions of Enols and Enolates

9. Enolization and alkylation of ethyl propionate with benzyl bromide. (See Notes.)

\[
\begin{align*}
\text{O} &= \text{C} - \text{CH}_3 \\
\text{LDA} &\quad \text{THF} \\
\text{Ph} &\quad \text{Br} \\
\end{align*}
\]

14. Acid catalyzed bromination of acetophenone to give \(\alpha\)-bromoacetophenone. (See Notes.)

\[
\begin{align*}
\text{Br}_2 &\quad \text{AcOH} \\
\text{H} &\quad \text{cont'd} \\
\end{align*}
\]

10 — Dehydration/Halogenation Agents

3. Reaction of 1-butanol with tosyl chloride and pyridine to give butyl tosylate. (See Notes.)

\[
\begin{align*}
\text{H} &\quad \text{cont'd} \\
\end{align*}
\]
7. Reaction of triphenylphosphine, carbon tetrachloride and cyclopentanol to give chlorocyclopentane. (See Notes.)

11 — Reduction Reactions

2. Sodium borohydride reduction of cyclopentanone to cyclopentanol.

Wolff Kischner Reduction

12. Reaction of the ketone with hydrazine under basic conditions to form the hydrazide.

12 — Oxidation Reactions

Chromic Acid Oxidation

1. Chromic acid oxidation (Jones oxidation) of 3-methyl-2-butanol to 3-methyl-2-butanone. (See Notes.)
5. Oxidation of cyclohexanol to cyclohexanone with sodium hypochlorite (NaOCl, bleach).

\[
\text{NaOCl} \quad \text{HCl} \\
\text{H}_{2}\text{O} / \text{HOAc}
\]

13 — Organometallic Reactions

Acyclic Heck Reaction

1. Step 1, reduction of palladium (II) to zero valent palladium with propene. (See Notes.)

\[
\text{Pd} \quad \text{AcO} \quad \text{Pd} \\
\text{OAc} \quad \text{AcO} \quad \text{Pd}
\]

Catalytic Reduction of an Alkene (See Notes.)

3. Catalytic hydrogenation of \textit{cis}-3-hexene to hexane.

\[
\text{Pd} \quad \text{D} \quad \text{D} \\
\text{C} \quad \text{H} \quad \text{H}
\]

14 — Aromatic Substitution Reactions

Electrophilic Aromatic Substitution of Benzene

1. Friedel Crafts acylation of benzene.

\[
\text{H}_{2}\text{C} = \text{C} \quad \text{Cl} \quad \text{AlCl}_{3} \\
\text{aryl cation}
\]
Nucleophilic Aromatic Substitution

11. Nucleophilic aromatic substitution of 1-fluoro-4-nitrobenzene with ammonia to give 4-nitroaniline. (See Notes.)

\[
\begin{align*}
\text{F} & \quad \text{NH}_3 \\
\text{O} & \quad \text{CH}_2\text{OH} \\
\text{O} & \quad \text{H}_2\text{O}
\end{align*}
\]

15 — Carbene and Nitrene Reactions

Carbene Reactions

1. Simmons-Smith carbene addition to cyclohexene to give a bicyclo[4.1.0]heptane. (See Notes.)

\[
\begin{align*}
\text{Zn} & \quad \text{I-CH}_2\text{-I} \\
\text{Cl} & \quad \text{KO-I-Bu} \\
\text{Cl} & \quad \text{H}
\end{align*}
\]

3. Dihalocarbene addition to cyclohexene to give 7,7-dichlorobicyclo[4.1.0]heptane.

16 — Radical Reactions

Allylic Bromination with NBS

2. Free radical bromination of cyclohexene with \(N\)-bromosuccinimide, an allylic bromination.

Overall reaction

\[
\begin{align*}
\text{benzoyl peroxide} & \quad \text{cat. amt.} \\
\text{heat or light (hv)} & \quad \text{NBS}
\end{align*}
\]
2. Free radical bromination of cyclohexene with *N*-bromosuccinimide, an allylic bromination -- continued.

Initiation (See *Notes*.)

Propagation

Termination

+ others
1 — Getting Ready for Reactions

Guide to Drawing Resonance Structures

Resonance Structures

If you are unfamiliar with the use of the curved arrow, refer to the discussion in the Notes section. A good place to start pushing electrons is in drawing resonance structures. They have the elements of electron movement, but the problems will be more limited in scope.

Resonance Structures of Anions

The principle for understanding resonance structures is to understand that electrons will operate by a push-pull mode or model. If there’s a net negative charge, it will be the electrons of the atom with the negative charge that will push toward the pi bond. We will start our curved arrow with those electrons. Continue to move them toward any neighboring pi bonds (push) to create and break new bonds. You should note that two curved arrows are required to avoid structures with more than eight valence electrons.

For the following examples, add curved arrows, where needed, to show how the electrons move to form the next structure. For 1-6, the first and last structures are the same. In that case, you are converting it back to the starting structure.

1.
 ![Resonance Structures Example 1]

2.
 ![Resonance Structures Example 2]

2 - Acid-Base Chemistry

1. For this example, the acids and bases are labeled. HF is the strongest acid as it has the lower pK$_a$. Therefore, F$^-$, its conjugate base, is the weakest base.

 ![Acid-Base Chemistry Example 1]

Notice the curved arrows. They describe the reaction that is taking place. We could write the following sentences to describe the curved arrows.

- A bond is being made between the oxygen and hydrogen atom with the electrons from the oxygen atom.
- A bond is being broken between the hydrogen and the fluorine atom with the electrons remaining attached to the fluorine atom.

3.
 ![Acid-Base Chemistry Example 2]
3 - Substitution Reactions

S\textsubscript{n}2 Substitution Reactions

1. An S\textsubscript{n}2 reaction of 1-chlorobutane with sodium iodide to give 1-iodobutane. (See Notes.)

2. An S\textsubscript{n}2 reaction of 1-chlorobutane with ethoxide to give 1-ethoxybutane (butyl ethyl ether). (See Notes.)

S\textsubscript{n}1 Substitution Reactions

20. An S\textsubscript{n}1 solvolysis reaction of \(t \)-butyl iodide to give \(t \)-butyl alcohol. (See Notes.)

21. An S\textsubscript{n}1 solvolysis reaction of \((R)\)-(1-chloroethyl)benzene to give rac-1-phenylethanol.

4 - Elimination Reactions

Alkene Formation

1. An E2 elimination reaction of hydrogen chloride from 1-chlorooctadecane with potassium \(t \)-butoxide to give 1-octadecene. (See Notes.)
3. An E2 elimination reaction of 2-bromo-2-methylbutane to give 2-methyl-2-butene, a Zaitsev product.

10. An E1cb elimination reaction of 3-chloro-3-methylcyclohexanone with t-butoxide to give 3-methyl-2-cyclohexenone. (See Notes.)

Acetylene Formation

20. A synthesis of 3-hexyne from trans-3-hexene by bromination and two elimination reactions. (See Notes.)

5 — Electrophilic Addition to Alkenes and Alkynes

Addition of HX and H₂O to Alkenes

1. Addition of hydrogen bromide to propene to give 2-bromopropane. (See Notes.)

7. Addition of hydrogen bromide to 3-methyl-1-butene to give after rearrangement, 2-bromo-2-methylbutane. (See Notes.)
10. Addition of hydrogen chloride to 2-methyl-1,3-butadiene (isoprene) to give, 3-chloro-3-methyl-1-butene, the kinetic product, or 1-chloro-3-methyl-2-butene, the thermodynamic product. (See Notes.)

15. Bromination of methylcyclohexene to give \((1R,2R) \) and \((1S,2S) \)-2-bromo-1-methylcyclohexanol. (See Notes.)

21. Addition of bromine to ethynylcyclopentane to give \((E) \)-(1,2-dibromovinyl)cyclopentane and \((1,1,2,2\)-tetrabromoethyl) cyclopentane. (See Notes.)

6 — Rearrangement Reactions

Baeyer-Villiger Oxidation

1. Acid catalyzed Baeyer-Villiger oxidation of 2,2-dimethylcyclopentanone with peracetic acid. (See Notes.)
7 — Electrocyclic Reactions

Diels Alder Reactions

1. A Diels-Alder reaction between 1,3-butadiene and 2-propenal (acrolein).

8. A reverse-forward Diels-Alder reaction between cyclopentadiene and maleic anhydride.

8 — Carbonyl Addition and Addition-Elimination Reactions

Grignard Addition to a Carbonyl Group

1. Addition of methyl magnesium bromide to cyclohexanone to give 1-methylcyclohexanol (for formation of Grignard reagents, see Notes).

Wittig Reaction

5. Wittig reaction, Step 1, formation of Wittig reagent. (See Notes.)

Step 2, reaction with benzaldehyde
10. Formation of the cyanohydrin (2-hydroxy-2-methylpropanenitrile) from acetone. (See Notes.)

23. Base hydrolysis of octyl isobutyrate to give octanol and isobutyric acid. Step 1, treatment with base. (See Notes.)

9 — Reactions of Enols and Enolates

9. Enolization and alkylation of ethyl propionate with benzyl bromide. (See Notes.)

14. Acid catalyzed bromination of acetophenone to give α-bromoacetophenone. (See Notes.)

10 — Dehydration/Halogenation Agents

3. Reaction of 1-butanol with tosyl chloride and pyridine to give butyl tosylate. (See Notes.)
7. Reaction of triphenylphosphine, carbon tetrachloride and cyclopentanol to give chlorocyclopentane. (See Notes.)

11 — Reduction Reactions

2. Sodium borohydride reduction of cyclopentanone to cyclopentanol.

Wolff Kischner Reduction

12. Reaction of the ketone with hydrazine under basic conditions to form the hydrazide.

12 — Oxidation Reactions

Chromic Acid Oxidation

1. Chromic acid oxidation (Jones oxidation) of 3-methyl-2-butanol to 3-methyl-2-butanone. (See Notes.)
5. Oxidation of cyclohexanol to cyclohexanone with sodium hypochlorite (NaOCl, bleach).

13 — Organometallic Reactions

Acyclic Heck Reaction

1. Step 1, reduction of palladium (II) to zero valent palladium with propene. (See Notes.)

Catalytic Reduction of an Alkene (See Notes.)

3. Catalytic hydrogenation of cis-3-hexene to hexane.

14 — Aromatic Substitution Reactions

Electrophilic Aromatic Substitution of Benzene

1. Friedel Crafts acylation of benzene.
Nucleophilic Aromatic Substitution

11. Nucleophilic aromatic substitution of 1-fluoro-4-nitrobenzene with ammonia to give 4-nitroaniline. (See Notes.)

\[\text{NH}_3 + \text{F}^+ \text{NO}_2^- \rightarrow \text{N} \text{H}_2 \text{O} \text{N} \text{O}_2^- \]

15 — Carbene and Nitrene Reactions

Carbene Reactions

1. Simmons-Smith carbene addition to cyclohexene to give a bicyclo[4.1.0]heptane. (See Notes.)

\[\text{Zn} \text{I} + \text{CH}_2\text{I} \rightarrow \text{ZnI}_2 + \text{C}_7\text{H}_{12} \]

3. Dihalocarbene addition to cyclohexene to give 7,7-dichlorobicyclo[4.1.0]heptane.

\[\text{Cl} \text{C} \text{H} \text{Cl} \rightarrow \text{ClClC}_7\text{H}_{12} \]

16 — Radical Reactions

Allylic Bromination with NBS

2. Free radical bromination of cyclohexene with \(N\)-bromosuccinimide, an allylic bromination.

Overall reaction

\[\text{C}_7\text{H}_{12} + \text{NBS} \xrightarrow{\text{NBS}} \text{BrC}_7\text{H}_{12} + \text{N}_{2} \text{CO} \]
2. Free radical bromination of cyclohexene with N-bromosuccinimide, an allylic bromination -- continued.

Initiation (See Notes.)

\[\text{heat or light} \rightarrow 2 \times \text{cyclohexene} + \text{Br}^\cdot \rightarrow \text{bromocyclohexene} + \text{HBr} \]

Propagation

\[\text{cyclohexene} + \text{Br} \rightarrow \text{cyclohexene} + \text{Br} \]

Termination

\[\text{cyclohexene} + \text{Br} \rightarrow \text{bromocyclohexene} + \text{HBr} \]
To the Instructor

The examples contained in *A Guide to Organic Chemistry Mechanisms* are designed to supplement a standard organic chemistry textbook. They were also designed by how I perceived how our brains work and how teaching can make the best use of that model.

A quotation that guided my teaching is credited to Confucius, “I hear and I forget. I see and I remember. I do and I understand.” I believed the greater the intellectual contribution a student made to their learning, the more they would understand. Therefore I sought ways to ask students to make the intellectual connections required for learning organic chemistry. Herein lies a maxim, “One cannot imagine the unimaginable.” If you wish to lead a donkey with a carrot, the carrot must be within sight but still out of reach of the donkey. I think students lose sight of the connection between a mechanism they are given and the steps necessary to solve a problem from an assignment. This book connects the missing steps by changing the complexity of each mechanism. By simplifying the mechanisms, the solutions remain within intellectual reach of students. As students master the steps, they can repeat the problems in which they must add more information.

When used in a class, *A Guide to Organic Chemistry Mechanisms* can be used in large classes with transparencies of a worksheet or in smaller classes in a guided inquiry style with students working in small groups. This works well with examples from Part A. Because students can solve the problems on their own, you may also use Parts B or C if previously assigned.

To the Student

If *A Guide to Organic Chemistry Mechanisms* is being used in your class, your instructor should assign the examples that correspond with your textbook. If you are using *A Guide to Organic Chemistry Mechanisms* on your own, then you should find relevant examples by examining the index or table of contents. *A Guide to Organic Chemistry Mechanisms* will make it easy to learn the steps in a reaction mechanism. I recommend you work your way through Parts A, B, and C. Commonly, students need to repeat most mechanisms several times before they can apply that mechanism to a new problem. After you have succeeded in writing a mechanism from this book, you should test yourself with a new example from your class assignment or textbook. If you have difficulty, you may return to an example from *A Guide to Organic Chemistry Mechanisms*.
Table of Contents

acknowledgements	-	-	-	-	-	iii
to the instructor	-	-	-	-	-	iv
to the student	-	-	-	-	-	iv
table of contents	-	-	-	-	-	v
index	-	-	-	-	-	vii

Preface

about the book	-	-	-	-	-	xiii
the curved arrow	-	-	-	-	-	xiv
rules for pushing electrons	-	-	-	-	-	xiv

1 — Getting Ready for Reactions

about the atom	-	-	-	-	-	1
guide to drawing resonance structures	-	-	-	-	-	2
resonance structures of anions	-	-	-	-	-	2
resonance structures of cations	-	-	-	-	-	3
resonance structures of neutral compounds with non-bonded electrons	-	-	-	-	-	4
resonance structures of neutral compounds without non-bonded electrons	-	-	-	-	-	5
resonance structures of radicals	-	-	-	-	-	6

2 — Acid-Base Chemistry

| bronsted-lowrey acids and bases | - | - | - | - | - | 7 |
| lewis acids and bases | - | - | - | - | - | 11 |

3 — Substitution Reactions

| s\textsubscript{2}2 substitution reactions | - | - | - | - | - | 12 |
| s\textsubscript{1}1 substitution reactions | - | - | - | - | - | 16 |

4 — Elimination Reactions

| alkene formation | - | - | - | - | - | 18 |
| acetylene formation | - | - | - | - | - | 23 |

5 — Electrophilic Addition to Alkenes and Alkynes

carbon-carbon double bond reactions	-	-	-	-	-	24
addition of hx and h\textsubscript{2}o to alkenes	-	-	-	-	-	24
bromination	-	-	-	-	-	27
oxymercurcation	-	-	-	-	-	28

hydroboration-oxidation of alkene	-	-	-	-	-	29
carbon-carbon triple bond reactions	addition to an internal acetylene	-	-	-	-	31
addition to a terminal acetylene	-	-	-	-	32	
disiamylborane hydroboration-oxidation of an acetylene	-	-	-	-	-	33

6 — Rearrangement Reactions

baeyer-villiger oxidation	-	-	-	-	-	34
pinacol rearrangement	-	-	-	-	-	36
benzilic acid rearrangement	-	-	-	-	-	36
dakin reaction	-	-	-	-	-	37
acetone from cumene	-	-	-	-	-	37

7 — Electrocyclic Reactions

| diels alder reactions | - | - | - | - | - | 38 |
| other electrocyclic reactions | - | - | - | - | - | 41 |

8 — Carbonyl Addition and Addition-Elimination Reactions

<p>| grignard addition to a carbonyl group | - | - | - | - | - | 42 |
| allyllithium addition to a carbonyl group | - | - | - | - | - | 42 |
| wittig reaction | - | - | - | - | - | 43 |
| addition-elimination reactions (reversible additions) | - | - | - | - | - | 44 |
| ketal formation and hydrolysis | - | - | - | - | - | 44 |
| oxime formation | - | - | - | - | - | 45 |
| other additions to a carbonyl group | - | - | - | - | - | 45 |
| reactions of acyl chlorides, anhydrides, esters, and amides | - | - | - | - | - | 46 |
| esters from acid chlorides or anhydrides | - | - | - | - | - | 46 |
| amides from acid chlorides or anhydrides | - | - | - | - | - | 47 |
| ester from acid with mineral acid catalysis (fischer esterification) | - | - | - | - | - | 48 |
| acid catalyzed hydrolysis of an ester | - | - | - | - | - | 48 |
| base hydrolysis of an ester (saponification) | - | - | - | - | - | 49 |
| hydrolysis of an amide | - | - | - | - | - | 49 |
| reactions of esters | - | - | - | - | - | 50 |
| reactions of nitriles | - | - | - | - | - | 51 |
| miscellaneous, ester with diazomethane | - | - | - | - | - | 52 |</p>
<table>
<thead>
<tr>
<th>9 — Reactions of Enols and Enolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldol Reaction</td>
</tr>
<tr>
<td>Claisen Condensation</td>
</tr>
<tr>
<td>Acetoacetate Synthesis</td>
</tr>
<tr>
<td>Enolate Alkylation Reactions</td>
</tr>
<tr>
<td>Halogenation of Carbonyl Compounds</td>
</tr>
<tr>
<td>Michael or 1,4-Conjugate Addition</td>
</tr>
<tr>
<td>Enamine Alkylation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10 — Dehydration/Halogenation Agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carboxylic Acid with Thionyl Chloride</td>
</tr>
<tr>
<td>Alcohol with a Phosphorus Reagent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11 — Reduction Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Borohydride Reactions</td>
</tr>
<tr>
<td>Lithium Aluminum Hydride Reactions</td>
</tr>
<tr>
<td>Reductive Amination</td>
</tr>
<tr>
<td>Diisobutylaluminum Hydride Reduction</td>
</tr>
<tr>
<td>Reduction of Alkyne with Sodium/Ammonia</td>
</tr>
<tr>
<td>Wolff Kischner Reduction</td>
</tr>
<tr>
<td>Catalytic Reduction of Nitrobenzene</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12 — Oxidation Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Form For Oxidations</td>
</tr>
<tr>
<td>Chromic Acid Oxidation</td>
</tr>
<tr>
<td>PCC, Tollens, Hypochlorite, and Sulfonium Based Oxidations</td>
</tr>
<tr>
<td>Peracid Epoxidation, MCPBA</td>
</tr>
<tr>
<td>Ozone Oxidation</td>
</tr>
<tr>
<td>Osmium Tetroxide, Potassium Permanganate, and Periodate Oxidations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13 — Organometallic Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyclic Heck Reaction</td>
</tr>
<tr>
<td>Cyclic Heck Reaction</td>
</tr>
<tr>
<td>Catalytic Reduction of an Alkene</td>
</tr>
<tr>
<td>Gilman Reagent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14 — Aromatic Substitution Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrophilic Aromatic Substitution, Benzene</td>
</tr>
<tr>
<td>Electrophilic Substitution of Substituted Aromatic Compounds</td>
</tr>
<tr>
<td>Nucleophilic Aromatic Substitution</td>
</tr>
<tr>
<td>Benzyne Reaction</td>
</tr>
<tr>
<td>Diazonium Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15 — Carbene and Nitrene Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbene Reactions</td>
</tr>
<tr>
<td>Curtius Rearrangement</td>
</tr>
<tr>
<td>Hoffmann Rearrangement</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16 — Radical Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Radical Bromination Reaction</td>
</tr>
<tr>
<td>Allylic Bromination with NBS</td>
</tr>
<tr>
<td>Radical Addition of Hydrogen Bromide</td>
</tr>
<tr>
<td>Benzyl Bromination with NBS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes to Specific Reactions</td>
</tr>
</tbody>
</table>
Index

A

Acid-Base Chemistry
7–11
- acetylide
- alkoxide
- amide anion
- Bronsted-Lowrey
- ester enolate
- ketone enolate
- Lewis acids
- methyl anion
Addition to Alkenes and Alkynes
24–33
- acetic acid
- bromine-water
- HBr
- HCl
- hydration. See Addition, water
- hydroboration-oxidation
- oxymercuration-reduction
- water
Aromatic Substitution Reactions
78–82
- benzyne reaction
- diazonium formation
- electrophilic aromatic substitution
- bromination
- chlorination
- Friedel-Crafts acylation
- Friedel-Crafts alkylation
- nitration
- triflic acid acylation
Carbonyl Enols and Enolates
53–60
- aldehyde
- alkyl lithium
- base hydrolysis
- diazomethane
- ester
- t-butyl w acid
- ketone
- alkyllithium
- cyanide
- Grignard rgt
- oxime
- reverse cyanide addition

B

Carbene and Nitrene Reactions
83–85
- Curtius rearrangement
- dihalocarbene
- Hoffmann rearrangement
- Simmons-Smith addition

C

Carbene and Nitrene Reactions
83–85
- Curtius rearrangement
- dihalocarbene
- Hoffmann rearrangement
- Simmons-Smith addition
Carbonyl Addition Rxns
42–52
- acid chloride
- alcohol
- amine
A Guide to Organic Chemistry Mechanisms

nitrile
alkylation 57
Curved Arrow xiv

D
Dehydration/Halogenation Agents 61–63
alcohol
phosphorous tribromide 63 thionyl chloride 61 tosyl chloride 61 triphenylphosphine, carbon tetrachloride 63
amide
anhydride 61 thionyl chloride 62 carboxylic acid
iminium salt 62 thionyl chloride 62

E
Electrocyclic Reactions 38–41
3+2 cycloaddition 41 Claisen rearrangement 41 reverse Diels-Alder 39
Elimination Reactions 18–23
amide anion 23 amine oxide 22 ammonium salt 22 Cope elimination 22 EI 21 E1cb 20 E2 18–20 ethoxide 18, 19, 20 Hofmann elimination 22 LDA 23 mineral acid 21 selenoxide 22 t-butoxide 18, 19, 20, 23

F
Functional Group Index
By Preparation of x
By Reaction of xi

G-M

N
Named Reagents & Reactions
Arbusov reaction 43 Baeyer-Villiger 34, 35

Organometallic Reactions 75–77
catalytic hydrogenation 77 Gilman reagent 77 acid chloride 77 conjugate addition 77 formation 77
Heck reaction 75, 76

Oxidation Reactions 70–74
alcohol 70 chromic acid oxidation 70 DMSO oxidation (Swern) 72 pyridinium chlorochromate 71 Swern oxidation 72 alkene 74 osmium tetroxide 74 ozone 73 permanganate 74 diol 74 Periodate 74
Radical Reactions
- allylic bromination 87
- anti-Markovnikov addition 88
- benzylic bromination 89
- Bromination 86–88
- Chlorination 86

Reactant by Type
- acid 48, 52, 62, 67
- acid anhydride 46–47, 61, 80
- acid chloride 46–47, 77, 78, 79, 84
- alcohol 12, 16, 17, 21, 61, 63, 71, 72
- aldehyde 42, 42, 42, 43, 53, 64, 67, 70, 71
- alkane 86, 89
- alkene 23, 24–30, 71, 73, 74, 75–77, 83, 87, 88
- alkyne 42, 42, 42, 13, 15, 31–33, 42, 68
- amide 49, 50, 61, 62, 66, 85
- amide anion 81
- amine 22, 54, 59, 60, 67, 81
- azobisisobutyronitrile 89
- diol 14, 14
- enolate 15, 15, 53
- enone 77
- epoxy 15, 15
- ester 48–49, 50, 55, 65, 68
- ester enolate 14, 45, 55, 57
- ether 14, 14
- halide 14, 12, 13, 14, 16, 17, 18–21, 23, 43, 56, 57, 75–76, 77, 78, 80
- halogenation 26–27, 78–80, 86–89
- ketoester 56, 59
- ketone 42, 44, 45, 53, 54, 58, 59, 60, 64, 65, 69
- methyl vinyl ketone 59
- LDA 57
- nitric acid 79
- nitriIe 51, 57
- nitro 69
- oxidation 34
- peracid 34, 35, 71
- peroxide 37
- phenoxide 14
- tosylate 13
- triflate 13

Rearrangement
- 1,2-cyclohexanediol 36–37
- Acetone from Cumene
- Baeyer-Villiger oxidation
- acetophenone 35, 35, 35, 34–35
- aldehyde 35, 35, 35, 34–35
- Benzophenone 35, 35, 35, 35
- dimethylcyclopentanone 34
- Dakin Reaction 37
- peracid 34–35
- 1,2-cyclohexanediol 36

Reduction Reactions
- borohydride 64
- aldehyde 64
- cyclopentanone 64
- ketoester 64
- reductive amination 67

Resonance Structures
- acetate 12
- acetylde 13, 15, 5, 7
- alcohol 15
- anisole 14
- azide 13
- bromide 12, 15, 17
- chloride 16
- cyanide 13, 4
- enolate, ester 14
- enolate, ketone 15, 15
- epoxide 15
- ethoxide 14, 12, 14
- iodide 12, 14
- oxirane 15
- phthalimide 14

Substitution Reactions
- acetate 12
- acetylde 13, 15, 5, 7
- alcohol 15
- anisole 14
- azide 13
- bromide 12, 15, 17
- chloride 16
- cyanide 13, 4
- enolate, ester 14
- enolate, ketone 15, 15
- epoxide 15
- ethoxide 14, 12, 14
- iodide 12, 14
- oxirane 15
- phthalimide 14

T-Z
- S_1 16–17
- S_2 12–14
- solvolysis 16, 17
- thiocyanate 12
Functional Group Index

By Preparation

<table>
<thead>
<tr>
<th>Preparation of</th>
<th>Starting Material</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>alkene</td>
<td>5.2, 5.15-19, 12.10-11</td>
<td></td>
</tr>
<tr>
<td>carbonyl compound</td>
<td>8.1-4, 8.12, 8.26, 9.1-2, 11.1-5, 11.8</td>
<td></td>
</tr>
<tr>
<td>Substitution reaction</td>
<td>3.15, 3.17-21, 3.23-24, 3.26</td>
<td></td>
</tr>
<tr>
<td>Aldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetal</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td>alcohol</td>
<td>12.3, 12.7</td>
<td></td>
</tr>
<tr>
<td>alkene</td>
<td>12.9</td>
<td></td>
</tr>
<tr>
<td>alkyne</td>
<td>5.24</td>
<td></td>
</tr>
<tr>
<td>diol</td>
<td>12.12</td>
<td></td>
</tr>
<tr>
<td>ester</td>
<td>11.10</td>
<td></td>
</tr>
<tr>
<td>Alkane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>alkene</td>
<td>13.3, 15.1-3</td>
<td></td>
</tr>
<tr>
<td>ketone</td>
<td>11.12</td>
<td></td>
</tr>
<tr>
<td>Alkene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>alcohol</td>
<td>4.13, 14.16</td>
<td></td>
</tr>
<tr>
<td>aldehyde</td>
<td>8.5-6</td>
<td></td>
</tr>
<tr>
<td>alkenyl or aryl halide</td>
<td>13.1-2, 13.4</td>
<td></td>
</tr>
<tr>
<td>alkyne</td>
<td>11.11</td>
<td></td>
</tr>
<tr>
<td>amine</td>
<td>4.17-18</td>
<td></td>
</tr>
<tr>
<td>electrocyclic rxn, Diels-Alder rxn</td>
<td>7.1-15, 7.17-18</td>
<td></td>
</tr>
<tr>
<td>halide</td>
<td>4.1-12</td>
<td></td>
</tr>
<tr>
<td>Alkyne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dihalide</td>
<td>4.20-23</td>
<td></td>
</tr>
<tr>
<td>Substitution rxn</td>
<td>3.10, 3.17</td>
<td></td>
</tr>
<tr>
<td>Amine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aldehyde</td>
<td>14.11</td>
<td></td>
</tr>
<tr>
<td>amide</td>
<td>11.6-7, 11.9, 11.13</td>
<td></td>
</tr>
<tr>
<td>carboxylic acid</td>
<td>15.4-5</td>
<td></td>
</tr>
<tr>
<td>halide</td>
<td>3.7(^1), 3.12(^2)</td>
<td></td>
</tr>
<tr>
<td>nitro</td>
<td>14.13</td>
<td></td>
</tr>
<tr>
<td>Aromatic compound, Substituted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzyne reaction</td>
<td>14.13</td>
<td></td>
</tr>
<tr>
<td>Electrophile substitution</td>
<td>14.1-9</td>
<td></td>
</tr>
<tr>
<td>Nucleophile substitution</td>
<td>14.11-12</td>
<td></td>
</tr>
<tr>
<td>Carboxylic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>alcohol</td>
<td>12.2</td>
<td></td>
</tr>
<tr>
<td>aldehyde</td>
<td>6.3, 6.7, 12.4</td>
<td></td>
</tr>
<tr>
<td>alkene</td>
<td>12.9, 12.11</td>
<td></td>
</tr>
<tr>
<td>amide</td>
<td>8.24-25</td>
<td></td>
</tr>
<tr>
<td>diketone</td>
<td>6.10</td>
<td></td>
</tr>
<tr>
<td>ester</td>
<td>8.21-23</td>
<td></td>
</tr>
<tr>
<td>ketone</td>
<td>9.13</td>
<td></td>
</tr>
<tr>
<td>nitrile</td>
<td>8.28</td>
<td></td>
</tr>
<tr>
<td>Carboxylic acid amide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>carboxylic acid</td>
<td>8.17-19</td>
<td></td>
</tr>
<tr>
<td>ester</td>
<td>8.27</td>
<td></td>
</tr>
<tr>
<td>nitrile</td>
<td>8.29</td>
<td></td>
</tr>
<tr>
<td>Diene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>halide</td>
<td>4.11-12</td>
<td></td>
</tr>
<tr>
<td>Preparation of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting Material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>alkene</td>
<td>12.10-11</td>
<td></td>
</tr>
<tr>
<td>epoxide</td>
<td>3.18(^3)</td>
<td></td>
</tr>
<tr>
<td>Halide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>alcohol</td>
<td>3.5, 3.22, 3.25, 3.27, 10.2, 10.6-7</td>
<td></td>
</tr>
<tr>
<td>alkane</td>
<td>16.1-4</td>
<td></td>
</tr>
<tr>
<td>alkyne</td>
<td>5.1, 5.4-14</td>
<td></td>
</tr>
<tr>
<td>alkyne</td>
<td>5.20-21</td>
<td></td>
</tr>
<tr>
<td>arene</td>
<td>14.3</td>
<td></td>
</tr>
<tr>
<td>halide</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>ketone</td>
<td>9.14</td>
<td></td>
</tr>
<tr>
<td>Haloalkene or arene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>alkyne</td>
<td>5.20-21</td>
<td></td>
</tr>
<tr>
<td>arene</td>
<td>14.3, 14.5, 14.9, 14.14</td>
<td></td>
</tr>
<tr>
<td>dihalide</td>
<td>4.20-23</td>
<td></td>
</tr>
<tr>
<td>Ketel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ketone</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>Ketone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>alcohol</td>
<td>8.11, 12.1, 12.5, 12.8</td>
<td></td>
</tr>
<tr>
<td>alkene</td>
<td>12.9</td>
<td></td>
</tr>
<tr>
<td>alkyne</td>
<td>5.22-23</td>
<td></td>
</tr>
<tr>
<td>arene</td>
<td>14.1, 14.8</td>
<td></td>
</tr>
<tr>
<td>carboxylic acid 13.6, 14.1, 14.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>diol</td>
<td>6.8-9, 12.12</td>
<td></td>
</tr>
<tr>
<td>enone</td>
<td>9.15-16, 13.5</td>
<td></td>
</tr>
<tr>
<td>ketone</td>
<td>9.6, 9.8, 9.14, 9.17</td>
<td></td>
</tr>
<tr>
<td>nitrile</td>
<td>8.30</td>
<td></td>
</tr>
<tr>
<td>Nitrile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>amide</td>
<td>10.1</td>
<td></td>
</tr>
<tr>
<td>halide</td>
<td>3.8-9</td>
<td></td>
</tr>
<tr>
<td>ketone</td>
<td>8.10</td>
<td></td>
</tr>
<tr>
<td>nitrile</td>
<td>9.12</td>
<td></td>
</tr>
<tr>
<td>Organometallic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>halide</td>
<td>8.1(^4), 8.3(^3), 13.1-6</td>
<td></td>
</tr>
</tbody>
</table>
Functional Group Index

By Preparation

<table>
<thead>
<tr>
<th>Preparation of Starting Material</th>
<th>Preparation of Starting Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenol</td>
<td>Sulfur containing</td>
</tr>
<tr>
<td>amine</td>
<td>halide</td>
</tr>
<tr>
<td>aryl ketone</td>
<td>alcohol</td>
</tr>
<tr>
<td>ether</td>
<td>1. Requires an additional reduction reaction</td>
</tr>
<tr>
<td>α-Substituted carbonyl compound</td>
<td>2. Step one of a two step Gabriel amine synthesis. It requires an additional hydrolysis reaction.</td>
</tr>
<tr>
<td>aldehyde</td>
<td>3. A diol will result if methanol is replaced with water.</td>
</tr>
<tr>
<td>ester</td>
<td>4. See Notes. , p. 22.</td>
</tr>
<tr>
<td>ketone</td>
<td>9.1</td>
</tr>
<tr>
<td>nitrile</td>
<td>3.11, 9.5, 9.7-8, 9.10</td>
</tr>
<tr>
<td></td>
<td>3.19, 9.2-4, 9.6, 9.8, 9.15-17</td>
</tr>
<tr>
<td></td>
<td>9.12</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

By Reaction

<table>
<thead>
<tr>
<th>Reaction of Preparation of</th>
<th>Reaction of Preparation of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td>Alkyne</td>
</tr>
<tr>
<td>alcohol</td>
<td>3.18</td>
</tr>
<tr>
<td>aldehyde</td>
<td>12.3, 12.7</td>
</tr>
<tr>
<td>alkene</td>
<td>4.13-14, 4.16</td>
</tr>
<tr>
<td>carboxylic acid</td>
<td>12.2</td>
</tr>
<tr>
<td>ester</td>
<td>8.20, 10.8</td>
</tr>
<tr>
<td>ether</td>
<td>3.2, 3.14, 3.16</td>
</tr>
<tr>
<td>halide</td>
<td>3.5, 3.22, 3.25, 3.27, 10.2, 10.6-7</td>
</tr>
<tr>
<td>ketal</td>
<td>8.7</td>
</tr>
<tr>
<td>ketone</td>
<td>6.12, 12.1, 12.5, 12.8</td>
</tr>
<tr>
<td>sulfonate</td>
<td>10.3</td>
</tr>
<tr>
<td>Aldehyde</td>
<td>Amine</td>
</tr>
<tr>
<td>alcohol</td>
<td>8.2-3, 8.12, 9.1-2, 11.1</td>
</tr>
<tr>
<td>alkene</td>
<td>8.5-6</td>
</tr>
<tr>
<td>amine</td>
<td>11.9</td>
</tr>
<tr>
<td>carboxylic acid</td>
<td>6.3, 6.7, 12.2, 12.4</td>
</tr>
<tr>
<td>enone</td>
<td>9.1, 9.3</td>
</tr>
<tr>
<td>ester</td>
<td>8.12</td>
</tr>
<tr>
<td>ketone</td>
<td>9.4</td>
</tr>
<tr>
<td>phenol</td>
<td>6.11</td>
</tr>
<tr>
<td>Alkane</td>
<td>Aromatic compound, Substituted</td>
</tr>
<tr>
<td>halide</td>
<td>16.1, 16.4</td>
</tr>
<tr>
<td>Alkene</td>
<td>alkane</td>
</tr>
<tr>
<td>alcohol</td>
<td>5.2, 5.16-19</td>
</tr>
<tr>
<td>aldehyde</td>
<td>12.9</td>
</tr>
<tr>
<td>alkane</td>
<td>15.1-3</td>
</tr>
<tr>
<td>alkenes</td>
<td>13.1-2</td>
</tr>
<tr>
<td>alkyne</td>
<td>4.20-21</td>
</tr>
<tr>
<td>carboxylic acid</td>
<td>12.9</td>
</tr>
<tr>
<td>diol</td>
<td>12.10-11</td>
</tr>
<tr>
<td>epoxide</td>
<td>12.6</td>
</tr>
<tr>
<td>ester</td>
<td>5.3</td>
</tr>
<tr>
<td>halide</td>
<td>5.1, 5.4-9, 5.12-15, 16.2, 16.3</td>
</tr>
<tr>
<td>ketone</td>
<td>12.9</td>
</tr>
</tbody>
</table>
Functional Group Index

By Reaction

<table>
<thead>
<tr>
<th>Reaction of</th>
<th>Preparation of</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diene, Diels Alder Rxn</td>
<td>cyclohexene</td>
<td>7.1-15</td>
</tr>
<tr>
<td></td>
<td>halide</td>
<td>5.10-11</td>
</tr>
<tr>
<td></td>
<td>aldehyde</td>
<td>12.12</td>
</tr>
<tr>
<td></td>
<td>ketone</td>
<td>6.8-9</td>
</tr>
<tr>
<td>Diol</td>
<td>amine</td>
<td>9.15</td>
</tr>
<tr>
<td></td>
<td>cyclohexene</td>
<td>7.1-2, 7.4, 7.6-15</td>
</tr>
<tr>
<td></td>
<td>ester</td>
<td>9.16</td>
</tr>
<tr>
<td></td>
<td>ketone</td>
<td>9.15-16, 13.5</td>
</tr>
<tr>
<td>Ester and lactone</td>
<td>alcohol</td>
<td>8.12, 8.26, 11.5</td>
</tr>
<tr>
<td></td>
<td>alcohol</td>
<td>8.21, 8.23, 11.10</td>
</tr>
<tr>
<td></td>
<td>aldehyde</td>
<td>11.10</td>
</tr>
<tr>
<td></td>
<td>alkene</td>
<td>8.22</td>
</tr>
<tr>
<td></td>
<td>carboxylic acid</td>
<td>8.21-23</td>
</tr>
<tr>
<td></td>
<td>carboxylic acid amide</td>
<td>8.27</td>
</tr>
<tr>
<td></td>
<td>ester</td>
<td>3.11, 8.12, 9.5-12</td>
</tr>
<tr>
<td></td>
<td>ketone</td>
<td>9.5-8, 9.10</td>
</tr>
<tr>
<td>Ether and epoxide</td>
<td>alcohol</td>
<td>3.17-19</td>
</tr>
<tr>
<td></td>
<td>alkene</td>
<td>3.17</td>
</tr>
<tr>
<td></td>
<td>halide</td>
<td>3.15</td>
</tr>
<tr>
<td></td>
<td>ketone</td>
<td>3.19</td>
</tr>
<tr>
<td></td>
<td>phenol</td>
<td>3.15</td>
</tr>
<tr>
<td>Halide</td>
<td>alcohol</td>
<td>3.20-21, 3.23-24, 3.26, 3.28</td>
</tr>
<tr>
<td></td>
<td>alkene</td>
<td>4.1-12, 4.15, 8.5-6</td>
</tr>
<tr>
<td></td>
<td>alkylbenzene</td>
<td>14.2</td>
</tr>
<tr>
<td></td>
<td>alkyne</td>
<td>3.10, 4.20-23</td>
</tr>
<tr>
<td></td>
<td>amine</td>
<td>3.7, 3.12</td>
</tr>
<tr>
<td></td>
<td>enone</td>
<td>4.10</td>
</tr>
<tr>
<td></td>
<td>epoxide</td>
<td>3.16</td>
</tr>
<tr>
<td></td>
<td>ester</td>
<td>3.4, 3.11, 9.8-10</td>
</tr>
<tr>
<td></td>
<td>ether</td>
<td>3.2, 3.13-14</td>
</tr>
<tr>
<td></td>
<td>halide</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>ketone</td>
<td>9.8-10</td>
</tr>
<tr>
<td></td>
<td>nitrile</td>
<td>3.8-9, 9.12</td>
</tr>
<tr>
<td>Halooalkene or arene</td>
<td>alkene</td>
<td>13.1-2, 13.4</td>
</tr>
<tr>
<td></td>
<td>alkyne</td>
<td>4.20-23</td>
</tr>
<tr>
<td></td>
<td>amine</td>
<td>14.11, 14.13</td>
</tr>
<tr>
<td></td>
<td>ether</td>
<td>14.12</td>
</tr>
<tr>
<td></td>
<td>halide</td>
<td>(3.6), 5.20-21</td>
</tr>
<tr>
<td>Imine, oxime, hydrazone</td>
<td>alkyllbenzene</td>
<td>11.12</td>
</tr>
<tr>
<td>Ketal</td>
<td>ketone</td>
<td>8.8</td>
</tr>
<tr>
<td>Ketone</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
About the Book

This book is a guide for learning organic chemistry reaction mechanisms. How should you use this book? Since I believed that I could always adapt a reaction to a new problem, I just need to know at least one example. This book is designed to teach that example. This book will help you to learn reactions in small portions making it easier for you to understand and remember.

However, before you start with the reactions, there are some things you should review. Therefore, Chapters 1 and 2 go over some fundamentals. In Chapter 1, I discuss some chemical principles that you can use to predict electron reactivity. This is followed by resonance structures. The problems are designed to be easy and illustrate patterns. This should appeal to our brains ability to find patterns that we can repeat. Therefore, you should succeed in completing all of these problems.

Resonance structures show how electrons move without forming any bonds to new atoms. In Chapter 2, you will do acid-base reactions. You will learn how to predict the equilibrium of a reaction and you will learn how to use the curved arrow. I have added an exercise to write English sentences with the curved arrows. I want to connect the logic of a curved arrow to a sentence as well as the graphical representation.

Now, start with any of the reactions or chapters and start with the Part A problems. Fill in the missing curved arrows. Everything you need to know is present in Part A. This shows the logic of a reaction. You must write the correct curved arrows for each step before you go to Part B. Go to that same reaction in Part B and repeat that reaction. Now you must add any missing ‘pre-bonds’, curved arrows, and structures. While I have removed some information from the reaction, the basic logic of the reaction remains. Finally, complete Part C. This is similar to problems in an organic chemistry textbook. I have retained the same number of reaction arrows as the original mechanism as additional hints. In addition, the reagents are written with their complete formulae and solvents are added but noted in italic type. You should strive to write out the complete mechanism. You may wish to photocopy a reaction or write it on a blank sheet of paper so you can go back and repeat an exercise. Once you have succeeded in writing a mechanism, you can move on to problems from your text.

The reactions are grouped by reaction type because it is easier to learn a series of related reactions. If your book is not organized in that manner, then select similar examples from the table of contents or from the index.

If you are able to write a mechanism for a problem in this book, you should be able to write a mechanism for other problems of the same mechanism. You should use this approach to solve the problems in your textbook. Clearly, you must be able to solve at least one problem if you are to solve another problem using that same mechanism.

You objective in studying should be to learn the patterns of the reaction mechanisms. The first problem always takes the greatest amount of time because you must learn the most to solve it. The more problems you solve, the less time it will take to solve them.

Writing Style (and Meaning)

I also wrote this book in the first person. Why write in the first person? First of all, it is a format that I am comfortable with. I like how it sounds. I also want to write in the first person because science can be gray. A scientific proof may not be as strong as we would like it to be. I think we are too frequently willing to accept something as true simply because it is written in a book. By writing in the first person, you will have a natural sense that an idea is my idea and other scientists may not accept it. As some of the mechanisms, topics and models contained in this text are different; I
will leave it to you to determine whether they are useful or true.’ I hope by doing so, you may go back to your regular textbook and measure the thoughts of that author in the same manner.

The Curved Arrow

The ‘curved arrow’ is the symbol that represents how electrons move. They indicate which bonds are being made and broken AND which atoms are being joined. They are the language of organic chemistry and their use is also referred to as ‘pushing electrons’.

In this book, I use a simple modification of pushing electrons. The traditional curved arrows are ambiguous if the curved arrow starts with a pair of electrons shared by two atoms AND indicate indicate a new bond being formed. This ambiguity can be avoided if a curved arrow does not indicate formation of a new bond. Therefore, a “pre-bond” or dashed line has been added to indicate where new bonds will be formed. It is used with the curved arrow to show which electrons move to make or break bonds and makes pushing electrons consistent and unequivocal in meaning.

Curved arrows are fundamental to understanding chemistry. The curved arrows are a required element in describing what is happening in a reaction. They describe the only electronic changes that can be made in any step in a reaction. If there is a curved arrow, that change must be made, and unless there is another curved arrow, no other changes can be made. Here is where students make a very common error. A student may write a curved arrow believed to lead to the formation of a product. However, the product they write will not be consistent with the curved arrows. Any difference between a curved arrow and the predicted result is an error of critical importance.

Another error is to fail to start the curved arrow with a pair of electrons. Some students may start a curved arrow at a proton to show its movement. However, the curved arrow represents a movement of electrons, not protons. A useful device I often use and encourage students to use, especially initially, is to circle the electrons being moved.

Rules for Pushing Electrons

<table>
<thead>
<tr>
<th>To Make a Bond or Increase the Bond Order</th>
<th>One Electron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two Electrons</td>
<td></td>
</tr>
<tr>
<td>A curved arrow must start with a pair of electrons on an atom or connecting two atoms and end between two atoms. It may point toward a pre-bond to indicate a new bond or to a single, or a double bond for a change in bond order. A bond will form to the common atom of the starting material and product.</td>
<td>Two half-headed curved arrows must end between two atoms and point toward a pre-bond, single, or double bond to indicate a new bond or a change in bond order. Each atom donating an electron are part of the new bond.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>To Break a Bond or Reduce the Bond Order</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Two Electrons</td>
<td>One Electron</td>
</tr>
<tr>
<td>A curved arrow must start with a pair of electrons connecting two atoms. That bond will be broken or reduced in bond order. If a curved arrow ends between two different atoms, a new bond is formed to the common atom. If not, no new bond is formed.</td>
<td>Two half-headed curved arrow must start with a pair of electrons connecting two atoms. That bond will be broken or reduced in bond order. The curved arrows may end on an atom or connect to new atoms to form new bonds.</td>
</tr>
</tbody>
</table>

* What is the difference? Models are never true, but they can be useful. If a model were true, then it wouldn’t be a model for something.

† Ideas presented in peer-reviewed journals will contain a reference to their source. Therefore, a reader understands that the idea belongs to the source. If authors accept the principles first laid out, then they may become commonly accepted. However, in the strictest use of logic, it does not become more true. It will remain only as true as the original proof or proofs.

‡ Many books use this convention, especially with Diels-Alder reactions. I have added the term ‘pre-bond.'